Quasiparticle dispersion and heat capacity of Na0.3CoO2: a dynamical mean-field theory study.
نویسندگان
چکیده
We use the dynamical mean-field theory to calculate the Fermi surface and heat capacity for Na0.3CoO2. We resolve the conflicting outcomes of previous calculations by demonstrating that the nature of the calculated Fermi surface depends sensitively upon the bare Hamiltonian, and, in particular, the crystal-field splitting. By calculating both the Fermi surface and the heat capacity, we show that the only conclusion consistent with angle-resolved photoemission and heat capacity measurements is that the e'g pockets are not present at the Fermi surface.
منابع مشابه
Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method
Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb r...
متن کاملDecoupling method for dynamical mean-field theory calculations
In this paper we explore the use of an equation of motion decoupling method as an impurity solver to be used in conjunction with the dynamical mean field self-consistency condition for the solution of lattice models. We benchmark the impurity solver against exact diagonalization, and apply the method to study the infinite U Hubbard model, the periodic Anderson model and the pd model. This simpl...
متن کاملHidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective.
We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these...
متن کاملDynamical mean-field theory for molecular electronics: Electronic structure and transport properties
We present an approach for calculating the electronic structure and transport properties of nanoscopic conductors that takes into account the dynamical correlations of strongly interacting d or f electrons by combining density-functional theory calculations with the dynamical mean-field theory. While the densityfunctional calculation yields a static mean-field description of the weakly interact...
متن کاملRandom Dispersion Approximation for the Hubbard model
We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard transition in the Hubbard model at half band filling. The RDA becomes exact for the Hubbard model in infinite dimensions. We implement the RDA on finite chains and employ the Lanczos exact diagonalization method in real space to calculate the ground-state energy, the average double occupancy, the charge gap, the momentum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 99 24 شماره
صفحات -
تاریخ انتشار 2007